Electricity-Free Amplification May Expand Molecular POC Testing
The need for molecular point-of-care (POC) tests is perhaps greatest in low-resource settings, where logistical constraints, including unreliable electricity make most current molecular testing technologies unfeasible. Electricity-free, non-instrumented nucleic acid amplification (NINA) is nearing a reality with the development of a platform by researchers at the nonprofit PATH (Seattle), according to a study published online Nov. 26, 2014 in Plos ONE. The group further showed that the heater can be paired with complementary, instrument-free technologies, such as a biplexed loop-mediated isothermal amplification (LAMP) assay and visual endpoint detection with nucleic acid lateral flow (NALF) and applied to the detection of HIV. The authors say that improvements over previous design iterations bring the technology from the “proof-of-concept stage to an optimized, robust alpha prototype.” By bringing molecular testing for infectious diseases closer to the site of patient care researchers hope to overcome challenges with patient follow-up while improving upon the sensitivity of over-the-counter antibody-based tests by enabling detection of infections in the very early stages of disease. The electricity-free, self-contained NINA system uses an inexpensive insulated thermos where the source of heat is a small-scale chemical reaction, rather than electrical power. In the latest iteration, the researchers utilize magnesium iron alloy […]
Subscribe to Clinical Diagnostics Insider to view
Start a Free Trial for immediate access to this article